Surname	Centre Number	Candidate Number
Other Names		2

GCE AS/A level

1092/01

CHEMISTRY - CH2

P.M. TUESDAY, 2 June 2015

1 hour 30 minutes

Section A
Section B

For Exa	aminer's us	e only
Question	Maximum Mark	Mark Awarded
1. to 8.	10	
9.	13	
10.	12	
11.	16	
12.	15	
13.	14	
Total	80	

ADDITIONAL MATERIALS

In addition to this examination paper, you will need a:

- calculator;
- Data Sheet containing a Periodic Table supplied by WJEC. Refer to it for any relative atomic masses you require.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Section A Answer **all** questions in the spaces provided.

Section B Answer **all** questions in the spaces provided.

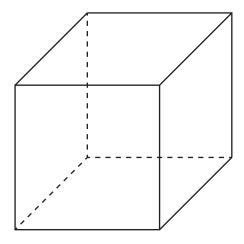
Candidates are advised to allocate their time appropriately between **Section A (10 marks)** and **Section B (70 marks)**.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 80.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.


The QWC label alongside particular part-questions indicates those where the Quality of Written Communication is assessed.

If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

SECTION A

Answer all questions in the spaces provided. Complete the electronic structure for the oxide ion present in magnesium oxide. [1] 2. Draw a dot and cross diagram to show the bonding in calcium fluoride. You should include outer electrons only and give any charges. 3. Give the meaning of the term electronegativity. [1] 4. Complete and label the diagram to show the positions of the ions present in caesium chloride, CsCl.

© WJEC CBAC Ltd. (1092-01)

Examiner only

PMT

5.	State the reagent(s) used and the colour change seen when a primary alcohol is a carboxylic acid.	oxidised to give [2]
	Reagent(s)	
	Colour change from to	
6.	State the systematic name of the compound shown below. $\label{eq:charge_compound} CH_3CH_2CCI = CH_2$	[1]
7.	On cracking, one molecule of $C_{20}H_{42}$ can produce one molecule of pentene, of hexene and one molecule of another product. Complete the equation for this reaction.	one molecule of

8. Draw the repeat unit of the polymer formed from the monomer $CH_3CH_2CH = CHCH_3$. [1]

C₂₀H₄₂ ____

Total Section A [10]

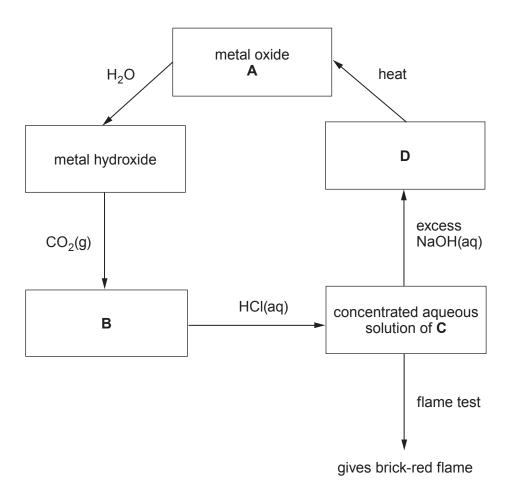
		SECTION B
		Answer all questions in the spaces provided.
(a)	Sodi first	ium and potassium both react with cold water but their reactivities are different. The ionisation energy affects the reactivity of Group 1 elements.
	(i)	Give an observation that shows the difference in reactivity with cold water between sodium and potassium. [1]
	(ii)	Describe the trend in the first ionisation energy of Group 1 elements and explair why this trend occurs. [2]
	(iii)	Explain how this trend affects the reactivity of Group 1 elements. [1]
	•••••	

© WJEC CBAC Ltd.

PMT

	1092

(D)	An A	LSE student said that, apart from metailic bonding, bonds were either ionic or covalent. A level student said that this was not really true and that bonds could be intermediate yeen ionic and covalent.
	(i)	State one factor that governs what type of bond elements form and explain how this leads to different types of bonding. [2]
	(ii)	Describe the electron density in each type of bond. [3] lonic
		Covalent
		Intermediate
	•••••	



© WJEC CBAC Ltd. (1092-01) Turn over.

Examiner only

Compound **A** is the oxide of a metal. (c)

> The diagram shows some reactions of compound A, and associated compounds, that can be carried out in the laboratory.

(i)	What metal is present in compound A?	[1]

What compound containing the metal is present in the aqueous solution **C**? (ii) [1]

Describe the appearance of the contents of the test tube with compound **D**.

(iii) [1]

Write the ionic equation for the reaction between solution ${\bf C}$ and aqueous sodium (iv) hydroxide.

Total [13]

© WJEC CBAC Ltd.

1092 010007

PMT

BLANK PAGE

10.	(a)	State	e why nitrogen is described as a <i>p</i> -block element.	[1]
	(b)	(i)	Draw a dot and cross diagram to show the electrons in the ammonium ior You should include outer electrons only.	n, NH ₄ †. [1]
		(ii)	State the bond angle in the ammonium ion. Explain why this is the case.	[2]
		(iii)	Ammonia reacts with oxygen to give nitrogen(II) oxide and water. Complete the equation for this reaction.	[1]
			4NH ₃ + O ₂ → NO + H ₂ O	

PMT

$$2NaNO_3(s)$$
 \longrightarrow $2NaNO_2(s)$ + $O_2(g)$

(i) Use oxidation numbers to complete the following.

In this reaction	has been reduced because its	s oxidation state has
changed from	to	[2]

(ii) What volume of oxygen, measured at room temperature and pressure, could be obtained by heating 4.40g of sodium nitrate? [3]

[The volume of 1 mol of oxygen is 24.0 dm³ under these conditions]

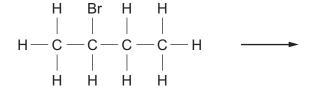
(d) A sample of sodium nitrate of mass 65 g was added to 50 g of cold water and the mixture was heated until it all dissolved.

The table gives information about the solubility of sodium nitrate at various temperatures.

Solubility of NaNO ₃ /g per 100 g water	Temperature/°C
88	20
96	30
103	40
112	50
122	60
133	70

Use the data in the table to calculate the mass of sodium nitrate that crystallised when the solution was cooled to $30\,^{\circ}$ C. [2]

Total [12]



© WJEC CBAC Ltd. (1092-01)

Turn over.

Examiner only

- **11.** 2-Bromobutane, C_4H_9Br , is a halogenoalkane that behaves in a similar way to 1-chlorobutane.
 - (a) (i) Complete the diagram below to show the mechanism for the reaction between 2-bromobutane and aqueous sodium hydroxide. You should include relevant charges, dipoles, lone pairs and curly arrows to show the movement of electron pairs. [4]

- (ii) What **type** of mechanism is shown in (a)(i)? [1]
- (iii) The reaction involves heterolytic bond fission.

What is meant by *heterolytic bond fission*? [1]

© WJEC CBAC Ltd.

Examiner only

PMT

(b)) Bror	moethane can be converted into ethene.	or
	(i)	Name the reagent and solvent needed to convert bromoethane into ethene.	[1]
	(ii)	What type of reaction occurs in (b)(i)?	[1]
	(iii)	2-Bromobutane behaves in a similar way to bromoethane in this type of react When 2-bromobutane is reacted as described in <i>(b)(i)</i> two alkenes that structural isomers are formed.	
		Draw the displayed formulae of these two alkenes.	[2]

1092 010011

© WJEC CBAC Ltd. (1092-01) Turn over.

The diagr	rams show the results.		
	separ fun	rating nel	
What can the alcoh	Student A be deduced about the alcoholols behave differently in this e	Student B ols given to each student? You sexperiment.	[5]
What can the alcoh	be deduced about the alcoho	ols given to each student? You s	should explain why [5] QWC [1]
the alcoh	be deduced about the alcohools behave differently in this e	ols given to each student? You s	[5] QWC [1]

© WJEC CBAC Ltd.

BLANK PAGE

is bubbled through. You should include an equation for the reaction that occurs. [3] (c) Ammonia was used as a refrigerant because it is relatively easy to liquefy. Ethane could	study of Chemistry. (a) Aluminium has a higher melting temperature than sodium. You should refer to the nature of the bonding. [3] QWC [1] (b) The colour of an aqueous solution of potassium iodide changes to brown when chlorine is bubbled through. You should include an equation for the reaction that occurs. [3]		
You should refer to the nature of the bonding. [3] QWC [1] (b) The colour of an aqueous solution of potassium iodide changes to brown when chlorine is bubbled through. You should include an equation for the reaction that occurs. [3] (c) Ammonia was used as a refrigerant because it is relatively easy to liquefy. Ethane could	You should refer to the nature of the bonding. (b) The colour of an aqueous solution of potassium iodide changes to brown when chlorine is bubbled through. You should include an equation for the reaction that occurs. (c) Ammonia was used as a refrigerant because it is relatively easy to liquefy. Ethane could not be used for this purpose. You should refer to intermolecular forces. [4]	Expla study	ain each of the following observations concerning substances that you have met in your of Chemistry.
(b) The colour of an aqueous solution of potassium iodide changes to brown when chlorine is bubbled through. You should include an equation for the reaction that occurs. [3]	(b) The colour of an aqueous solution of potassium iodide changes to brown when chlorine is bubbled through. You should include an equation for the reaction that occurs. [3] (c) Ammonia was used as a refrigerant because it is relatively easy to liquefy. Ethane could not be used for this purpose. You should refer to intermolecular forces. [4]	(a)	Aluminium has a higher melting temperature than sodium.
is bubbled through. You should include an equation for the reaction that occurs. [3] (c) Ammonia was used as a refrigerant because it is relatively easy to liquefy. Ethane could	is bubbled through. You should include an equation for the reaction that occurs. [3] (c) Ammonia was used as a refrigerant because it is relatively easy to liquefy. Ethane could not be used for this purpose. You should refer to intermolecular forces. [4]		
is bubbled through. You should include an equation for the reaction that occurs. [3] (c) Ammonia was used as a refrigerant because it is relatively easy to liquefy. Ethane could	is bubbled through. You should include an equation for the reaction that occurs. [3] (c) Ammonia was used as a refrigerant because it is relatively easy to liquefy. Ethane could not be used for this purpose. You should refer to intermolecular forces. [4]		
(c) Ammonia was used as a refrigerant because it is relatively easy to liquefy. Ethane could	(c) Ammonia was used as a refrigerant because it is relatively easy to liquefy. Ethane could not be used for this purpose. You should refer to intermolecular forces. [4]	(b)	
	not be used for this purpose. You should refer to intermolecular forces. [4]		You should include an equation for the reaction that occurs. [3]
	not be used for this purpose. You should refer to intermolecular forces. [4]		
	not be used for this purpose. You should refer to intermolecular forces. [4]	••••••	
not be used for this purpose.		(c)	
You should refer to intermolecular forces. [4]			You should refer to intermolecular forces. [4]

© WJEC CBAC Ltd.

Examine		
only	The reaction between methane and chlorine does not produce a pure sample of chloromethane, $\mathrm{CH_3Cl.}$	(d)
	You should include the name of the mechanism of the reaction involved and give an equation to show the formation of a product other than chloromethane. [3] QWC [1]	
	Total [15]	

© WJEC CBAC Ltd. (1092-01) Turn over.

Δns	acid F was known to be one o	f the following		
7 111 6	$CH_3CH_2HC = CHCO_2H$	Acid 1	$M_{\rm r} = 100$	
	HO ₂ CCH ₂ CH ₂ CO ₂ H	Acid 2	$M_{\rm r} = 118$	
Δςα	imple of 1.20 g of acid F was		·	ovide was
form		burried in excess	oxygen. 1.79g of carbon di	Oxide was
(i)	Calculate the mass of carbo	on present in the	sample of acid F .	[1]
		M	lass of carbon =	C
(ii)	The mass of hydrogen in the		g. Assuming that the rest of t	
()	is oxygen, calculate the ma			[1]
		М	ass of oxygen =	g
(iii)	Use your answers to parts ((i) and (ii) to find t	the empirical formula of acid	F . [2]
	Empirical formula			
(iv)	•		v you reached this conclusio	n. [1]
` '		, , , , , , , , , , , , , , , , , , , ,	,	

(v)	Describe a chemical test that would distinguish between Acid 1 and Acid 2. You should include the expected results.	[1]
(vi)	Draw the structural formula of the alcohol that can be oxidised to form Acid 2.	[1

	19									
(i)	What can be deduced by the presence of the peak at m/z 46 in the mass spectrum? [1]									
(ii)	What can be deduced by the presence of the peak at m/z 15 in the mass spectrum? [1]									
(iii)	What can be deduced by the presence of an absorption peak at 3100 to 3500 cm ⁻¹ in the infrared spectrum? [1]									
) Eth	Ethene can be converted into ethanol and ethanol can be converted into ethene.									
	For each conversion, state the reagent(s) used and the conditions needed. [4]									
etn	etnene to etnanoi									
eth	ethanol to ethene									
Total [14]										
	Total Section B [70]									
	END OF PAPER									

Turn over. (1092-01) © WJEC CBAC Ltd.

BLANK PAGE

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only

BLANK PAGE

GCE AS/A level

CHEMISTRY - DATA SHEET FOR USE WITH CH2

P.M. TUESDAY, 2 June 2015

Infrared Spectroscopy characteristic absorption values

Bond	Wavenumber/cm ⁻
C—Br	500 to 600
C—CI	650 to 800
C—O	1000 to 1300
C = C	1620 to 1670
C=O	1650 to 1750
C≡N	2100 to 2250
C—H	2800 to 3100
О—Н	2500 to 3550
N—H	3300 to 3500

THE PERIODIC TABLE

	0		4.00 He	Helium 2	20.2 Ne	Neon 10	40.0 Ar	Argon 18	83.8 Kr	Krypton 36	X 33	Xenon 54	(222) Rn	<u> </u>										
	7				19.0 T	Fluorine 9	35.5 CI	Chlorine 17	79.9 Br	Bromine 35	127	lodine 53	(210) At	Astatine 85		,	175 Lu	Lutetium 71	(257) Lr	Lawrencium 103				
	9			p Block	16.0 O	Oxygen 8	32.1 S	Sulfur 16	79.0 Se	Selenium 34	128 Te	Tellurium 52	(210) Po	Polonium 84			173 Yb	Ytterbium 70	(254) No	Nobelium 102				
	2			рВ	4.0 V	Nitrogen 7	31.0 P	Phosphorus 15	74.9 As	Arsenic 33	122 Sb	Antimony 51	209 Bi	Bismuth 83			169 Tm	mnllum 69	(256) Md	Mendelevium 101				
	4				15.0 C	Carbon 6	28.1 Si	Silicon 14	72.6 Ge	Germanium 32	119 Sn	Tin 50	207 Pb	Lead 82			167 Er	Erbium 68	(253) Fm	Fermium 100				
	က				10.8 B	Boron 5	27.0 Al	Aluminium 13	69.7 Ga	Gallium 31	115 In	Indium 49	204 T	<u> </u>			165 Ho	Holmium 67	(254) Es	Einsteinium 99				
4									65.4 Zn	Zinc 30	112 Cd	Cadmium 48	201 H a	Mercury 80			163 Dy	Dysprosium 66		Californium 98				
IABL									63.5 Cu	Copper 29	108 Ag		197 A U		f Block	159 Tb Terbium 65	(245) BK	Berkelium 97						
							number OCK		d Block				58.7 N	Nickel 28	106 Pd	Palladium 46	£ ₽	귭		fΒ	157 Gd	Gadolinium 64		Curium 96
HE PERIODIC											58.9 Co	Cobalt 27	103 Rh	Rhodium 45	192 r	Ξ			(153) Eu	Europium 63		Americium 95		
# Z	roup	<u> </u>		relative	mass	atomic number		d Block		55.8 Fe	Iron 26	101 Ru	Ruthenium 44	190 SO	Osmium 76			150 Sm	Samarium 62	(242) Pu	Plutonium 94			
=	5 D		Key	`	A _r Symbol	Name Z				54.9 Mn	Manganese 25	98.9 Tc	Technetium 43	186 Re	~			(147) Pm	Promethium 61		Neptunium 93			
					<u> </u>						52.0 Cr	Chromium 24	95.9 Mo	Molybdenum 42	184 W	1				Neodymium 60		Uranium 92		
											50.9	Vanadium 23	92.9 Nb	Niobium 41	25 G	<u> </u>			141 Pr	Praseodymium 59	(231) Pa	Protactinium 91		
															47.9 Ti	Titanium 22	91.2 Zr	Zirconium 40	179 H	Hafnium 72			O 440	Cerium 58
									45.0 Sc	Scandium 21	88.9	Yttrium 39	139	Lanthanum 57	(227) Ac b	Actinium 89			▶▶ Actinoid elements					
	7	9.01 Beryllium 4 Magnesium			Magnesium 12	40.1 Ca	Calcium 20	87.6 Sr	Strontium 38	137 Ba	Barium 56	(226) Ra	Kadium 88	► Lanthanoid	Ś	A								
	_	s Block	1.0.T	Hydrogen 1	6.94 Li	Lithium 3	23.0 Na	Sodium 11	39.1	Potassium 19	85.5 Rb	Rubidium 37	133 CS	Caesium 55	(223) Fr	rrancium 87								
		po				1	~)	4		L	ດ	•	9										
		Period					CBAC Ltd			(1092-														
		_			C	*******	ODAO EI			(1082-	<i>□ 17()</i>													